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Simple model for drag reduction
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Direct numerical simulations established that the finite-extension nonlinear-elasticity—P&t&NiE-P
model of viscoelastic flows exhibits the phenomenon of turbulent drag reduction which is caused in experi-
ments by dilute polymeric additives. To gain analytic understanding of the phenomenon, we introduce in this
paper a simple one-dimensional model of the FENE-P equations. We demonstrate drag reduction in the simple
model, and explain analytically the main observations which incladeeduction of velocity gradients for
fixed throughput andii) increase of throughput for fixed dissipation.
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The addition of few tens of parts per millighy weighj IR g o au,
of long-chain polymers to turbulent fluids can bring about a 5 U V)IRy=——Ryp+t Ry ——
reduction of the friction drag by up to 8094]. This “drag 4 B
reduction” phenomenon has important practical implications 1 5
besides being interesting from the fundamental point of view, — [F(nORap=podapl- ()
integrating turbulence research with polymer physics. In P
spite of intense interest for an extended period of fige4],
Sreenivasan and Whifd] recently concluded that “it is fair . . .
These equations were simulated on the computer in a chan-

to say that the extensive—and continuing—activity has not el or pine qeometrv. The main observations on the effect of
produced a firm grasp of the mechanisms of drag reduction.” PIpe g Y.

Recently, however, it was shown that drag reduction is oplhe polymer on the turbulent flow that we need to focus on

served in direct numerical simulation of model viscoelastic®'® the following. , _
hydrodynamic equationg5—7]. From the theoretical view- (1) For a fixed pressure gradient at the wall the fluid
point these observations are crucial, indicating that the phdlroughput is increasegee Fig. 1 _

nomenon is included in the solutions of the model equations. (i) For a fixed throughput the gradient at the wall de-
Understanding drag reduction then becomes a usual chafréasesi.e., the dissipation decreages _
lenge of theoretical physics. In this paper, we present a fur- (iii) The trace of the conformation tensRifollows quali-
ther simplification of the model equations and gain analyticatively the rms streamwise velocitisee Fig. 2 We are
insights into the phenomenon. The finite-extensionParticularly interested in poinii) since in our opinion the
nonlinear-elasticity—PeterlitFENE-P equation for the fluid ~SPace dependence of the amount of stretckamgl with it of

velocity u(r,t) contains an additional stress tensor related tghe effective viscosityis crucial, and comparg8,9] for a
the polymer: discussion of this point in the context of the instability of

laminar flows. Obviously, Eqg1)—(3) as they stand are not

Ju
E+(U~V)u=—Vp+vSV2u+V~T+F, 1) or P

where v is the viscosity of the neat fluid; is the forcing,
and the stress tens@ris determined by the polymer confor-
mation tensolR according to

vp| f(r,1)
T(r,t)=— >—R(r,t)—1}. (2
ol Po
0 = ! s TR R S N Il L L TR RS R |
Here, v, is a viscosity parameter,, is a relaxation time for 10 10, 10°
the polymer conformation tensgsg is the rms extension of Y
the polymers in equilibrium, and(r,t) is a function that FIG. 1. The mean flow velocity as a function of the distance

limits the growth of the trace oR. The model is closed by from the wall for the FENE-Rdashed lingvs the Newtonian flow
the equation of motion for the conformation tensor which(continuous ling The profiles hardly change near the wall, but the
reads amplitude is larger for the FENE-P solution.
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FIG. 3. Comparison of the solution of theR model(connected
circles to the solution of Burger's equatiafcontinuous ling The
dashed line corresponds to the functi® The parameters are
r=10% uy=1.17,5=0.25, andR,=2.5.

08 F simple terms. Multiplying Eq(4) by u and taking the spatial
L average of Eqsi4) and(5), we obtain

%%(lﬂ):—y<u§)+s<uRy>+<Fu), (6)

d 1
Gi{R=—~(RI+2Ru). ™

o The term(uR,) measures the “energy” given by the velocity
0 50 100 field u to the polymer fieldR. Multiplying Eq. (7) by s/2 and

+

y summing Eq(7) with Eq. (6), we obtain

0 [ . . . 1 . . . . ]

FIG. 2. Upper panel: the dependence of the rms velocity fluc- 1 s s
tuations as a function of the distance from the wall. We are inter- —(—(u2>+ —(R}) =— ,,<u2>_ —(R)+(Fu). (8
ested inU,,,s for comparison with our model. Lower panel: the trace dtl2 2 oo 2r

of the conformation tensdR as a function of the distance from the

wall. We stress the qualitative similarity to the dependence g, !N the steady state, the oyerall pov(Erl_J) i_S balanced byzthe
in the upper panel. overall energy dissipation per unit tim®, D=w(uy)

+(s/27)(R). The termz(u?)+ (s/2) (R) represents the sum

amenable to analytic investigation in the turbulent regime. T&®f the kinetic energy of the flow plus the potential energy of
gain insight, we therefore attempt to simplify them as muchthe stretched polymers. We remark that already from these
as possible without losing the main phenoméie-(iii ). elementary considerations it becomes clear that for a fixed
Consider therefore a model for the streamwise velocityPOWwer input the existence of the ters/Z7)(R) necessarily
which is the Burger's equationu(in the streamwise direc- reduces the gradients ofin agreement with poinfii) above.
tions with gradients in they (wall-norma) direction, to To address point§i) and (iii ) further, we consider next the
which the effect of a scalaR is added: solution of the model with==0 and with a fixed velocity
and stretchingR at —L and L. In other words, we take as
Uy UL, = pUy,+ SR+ F, 4) boundary conditions
u(—=L)=up, u(L)=-Uy, R(~L)=R(L)=R,.

©)

In Fig. 3, we compare the solution of thi® model to that of
the pure Burger’s equatidh.e., Eq.(4) with R=F=0.] To
where a subscripy stands for a partial derivative with re- focus our thinking, we would like the reader to consider the
spect toy. In the following, we shall denote Eq&}) and(5)  solution in the left half space as a model of the streamwise
with the acronimousiR model The parametes is related to  velocity component in the lower half channel, with the solu-
the polymer concentration andis the relaxation time oR.  tion in the right half space being simply an antisymmetric
We will consider the model in the domainL<y<L, with  copy. The position of the lateral “wall” is modeled by the
boundary conditions chosen later. We will denote spatial avpoint whereu=0. Thinking this way pointgii) and(iii) are
erages by pointed bracketd)= [ ELA(y)dy. The simplic-  clearly demonstrated. We proceed now analytically to dem-
ity of the uR model allows us to state the energy budget inonstrate drag reductidpoint (ii)] and to understand the pro-

1
Rt+uRy=—;R+Ruy, (5)
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file of R [point (iii)]. First, we consider the stationary solu-
tion of the pure Burger’s equation. Integrate E4). in y to
find

L=+ A, (10)

where the constant of integration was fixed by noticing that
for L sufficiently largeu, is expected to vanish at the bound-
aries. Multiplying Eq.(10) by uy, and integrating between
—L andL using the boundary conditions, we find the viscous
dissipatione,

2
e=v(u)= §u8. (11
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FIG. 4. The solution of th&R model with constant forcing and

Next we consider the solution of thék model for the same periodic boundary condition&onnceted circlgs Continuous line:
boundary condition§9) and R=0. In the stationary state the Burger equation without the polymer.

R;=0, and by dividing Eq.(5) by Ru we can integrate it
formally in y and obtain

1(dy
R:a|u|exr{—;J’ F) (12

where a is a constant of integration. This equation is the
explanation of pointliii). It says that for small velocity
~0, i.e., fory~0, R necessarily goes t0. In particular,
approximatingu= —my near the pointy=0, we obtainR
~|ul®, whereb=1+ 1/(m7). Thus, we should expect that at
positions with smallu where the gradient ofi is large the
generic behavior oR is a cusp withR=0 for mr=1. To
compute the dissipation analytically, we consider the limit
7—o, i.e., we look for a solution at the zero order of the
perturbation series in 4/ In this limit

3
F(y)=fosin(4y/3), for 0=y=>",

3
F(y)=f,sin(4y), for ;$y$2w. (16)

We examined the solutions of theéR model for the set of
parameter$,=0.1, f;=0.05, »=0.01, s=0.01, and initial
conditionsR(y) =2 sinfy). The remaining parameter is the
relaxation timer. It turns out that for very small values of

no effect of the polymer field is observed@Ve remark that
for periodic boundary conditions the limit—0 corresponds
to the case of no polymerf-or 7— o no stationary solutions
can be obtained. For smaller than some critical valug,,
the solution of theuR model shows stable stationary solu-

R tions with drag reduction. The typical situation is presented

R= —0|u|. (13) in Fig. 4, showing the numerical solutions fer(0.15) !
Uo <., compared against the solution of Burger’'s equation.
The uR model shows a larger amplitude near the strongest

Returning to Eq(4), we integrate it intoy to obtain

shock due to forcing at=3/4. It is worth noting that the

- L gradient is maintained extremely close to the one obtained by
vUy=3U"—~SR+sRy—3Up. (14 the Burger equation, demonstrating nicely point Point
(iii ) is nicely demonstrated in Fig. 5 which presents the so-
We can now substitute Eq13) in the domain—L<y<O |ution for R together withu? for both theuR model and the
where|u|=u, and integrate betweenL and 0. Multiplying  Burger equation. As one can clearly see, the behavi isf
the result by a factor of 2, we find the viscous dissipaégn  similar to what is observed in Fig. 1, namely, there is a
qualitative similarity between the space dependendre aid

€r=5U3—3sRyUy. 15  u?

, here with a sharp cusp R near the point of maximum

gradient ofu. On the other hand, the smallest shock present
This result is an analytic demonstration of paiinj. We note  in the solution of Burger's equation has been completely
that our analysis has been performed in the limit. For  smoothed out by th@&R model. This is an indication that
large but finite values of, the qualitative picture we have whenRis not sufficiently suppressed where the gradieni of
drawn is unchanged. Needless to say, the above discussi@significant, there can bdrag enhancemenThis important
can be reformulated by keeping constant the energy dissipgoint will be addressed again in the concluding remarks.
tion while increasing the value af at the boundary, to dem- Again, the simplicity of the model affords an analytic expla-
onstrate pointi). We choose, however, to demonstrate pointnation of why the solution near the biggest shock shows a
(i) next, using a forced solution. Poifit) is most clearly larger velocity amplitude compared to the Burger equation.
demonstrated in theR model using periodic boundary con- Let y, be the position of the maximal velocity near the
ditions and constant forcing. We consides=<2# and shock. The positioly, is unchanged in the two models. We
choose the external forcing to be can expandy, F, andR as power series neay. Let A be
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04r features, and provided straightforward analytic explanation
ST S to all those features. It appears that we can draw from the
results of this model a few important conclusions.

(i) Arguments concerning the turbulent cascade process
do not appear essential. These arguments are the hallmark of
the theory presented in R¢#i] which proposed that the main
effect of the polymer is to introduce a dissipative cutoff at
scales larger than the Kolmogorov scale, due to the polymer
relaxation time matching there the hydrodynamic time scale.
Looking at Eq.(5), one could think that the largest velocity
gradients could be estimated @s,|)~1/7. But sinceR can
go to 0 where the gradient is largest, such estimates cannot
be made. Moreover, just an increase in the dissipative scale
cannot account for drag reductionhamogeneougcrease

FIG. 5. The solution of theR model with constant forcing and In the effective viscosity should lead by itself to drag en-
periodic boundary conditions. Dashed lin®(y). Connected hancement rather than reduction.
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circles: 2@12 of the solution ofuR Solid line: 2@? of the solution (i) Drag reduction is a phenomenon that appears on the
of Burger’s equation. scales of the system size, involving energy containing modes
rather than dissipative, small scale mo&8].
defined as\ =ys—y,, wherey;=37/4 is where the velocity (i) The main point appears to be tspace dependence
vanishegthe wall position in our model We have of the stretching of the polymer, here modeled by the value
of R(y). It is crucial thatR is small where the velocity gra-
u(y)=uo—Uzy?, F(Y)=Fo+F1y, R(Y)=Ro+Ryy, dients are large. It is the space dependence of the effective

(17)  viscosity which should be looked at as the source of drag
reduction. A similar conclusion was arrived at in the context
of the study of the stability of laminar flows in a channel
geometry{8,9] accept that there the space dependence of the
vfo+ SRy L sR effective viscosity had bee_n introduced by hand. In_ the
Uo=—— 27~ Up(1+P), P= g (19 FENE-P context as well as in our modehd presumably in
0 V7lo actual experimenjs the space dependence appears self-
consistently. It remains to understand this self-consistent
_ - ; o . buildup of differential effective viscosity in the context of the
gopr_”?g 'd::gerlgglrji?c?nmigf;roepgiligﬂg'&:!(:h 1S responS|bIemuch more elaborate FENE-P model. In Iight of the present
In summary, we ha;ve introduced a simple model of there.sults, th_|s appears an extremely worthwhile endeavor that
effect of polymeric additives to Newtonian fluids, with the V.V'” shed important light on the phenomenon of drag reduc-
aim of understanding in simple mathematical terms some o on.
the prominent features associated with the phenomenon of This work was supported in part by the European Com-
drag reduction. Needless to say, the model cannot be taken asission under a TMR grant, the German Israeli Foundation,
guantitative; we were concerned with the qualitative featureand the Naftali and Anna Backenroth-Bronicki Fund for Re-
summarized above for convenience as poif}s(iii). We  search in Chaos and Complexity. We thank E. de Angelis for
demonstrated that our model reproduces these qualitatiieigs. 1 and 2, taken from her Ph.D. thesis.

whereFy~f,A andF;~ — fy because of Eq.16). Inserting
Eqg. (17) into theuR model, we obtain

where up,=v/A is the solution obtained without polymer
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