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Simple model for drag reduction
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Direct numerical simulations established that the finite-extension nonlinear-elasticity–Peterlin~FENE-P!
model of viscoelastic flows exhibits the phenomenon of turbulent drag reduction which is caused in experi-
ments by dilute polymeric additives. To gain analytic understanding of the phenomenon, we introduce in this
paper a simple one-dimensional model of the FENE-P equations. We demonstrate drag reduction in the simple
model, and explain analytically the main observations which include~i! reduction of velocity gradients for
fixed throughput and~ii ! increase of throughput for fixed dissipation.
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The addition of few tens of parts per million~by weight!
of long-chain polymers to turbulent fluids can bring abou
reduction of the friction drag by up to 80%@1#. This ‘‘drag
reduction’’ phenomenon has important practical implicatio
besides being interesting from the fundamental point of vi
integrating turbulence research with polymer physics.
spite of intense interest for an extended period of time@2–4#,
Sreenivasan and White@1# recently concluded that ‘‘it is fair
to say that the extensive—and continuing—activity has
produced a firm grasp of the mechanisms of drag reductio
Recently, however, it was shown that drag reduction is
served in direct numerical simulation of model viscoelas
hydrodynamic equations@5–7#. From the theoretical view-
point these observations are crucial, indicating that the p
nomenon is included in the solutions of the model equatio
Understanding drag reduction then becomes a usual c
lenge of theoretical physics. In this paper, we present a
ther simplification of the model equations and gain analy
insights into the phenomenon. The finite-extens
nonlinear-elasticity–Peterlin~FENE-P! equation for the fluid
velocity u(r,t) contains an additional stress tensor related
the polymer:

]u

]t
1~u•“ !u52“p1ns“

2u1“•T1F, ~1!

wherens is the viscosity of the neat fluid,F is the forcing,
and the stress tensorT is determined by the polymer confo
mation tensorR according to

T ~r,t !5
np

tp
F f ~r,t !

r0
2

R~r,t !21G . ~2!

Here,np is a viscosity parameter,tp is a relaxation time for
the polymer conformation tensor,r0 is the rms extension o
the polymers in equilibrium, andf (r,t) is a function that
limits the growth of the trace ofR. The model is closed by
the equation of motion for the conformation tensor whi
reads
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]r b

2
1

tp
@ f ~r,t !Rab2r0

2dab#. ~3!

These equations were simulated on the computer in a c
nel or pipe geometry. The main observations on the effec
the polymer on the turbulent flow that we need to focus
are the following.

~i! For a fixed pressure gradient at the wall the flu
throughput is increased~see Fig. 1!.

~ii ! For a fixed throughput the gradient at the wall d
creases~i.e., the dissipation decreases!.

~iii ! The trace of the conformation tensorR follows quali-
tatively the rms streamwise velocity~see Fig. 2!. We are
particularly interested in point~iii ! since in our opinion the
space dependence of the amount of stretching~and with it of
the effective viscosity! is crucial, and compare@8,9# for a
discussion of this point in the context of the instability
laminar flows. Obviously, Eqs.~1!–~3! as they stand are no

FIG. 1. The mean flow velocity as a function of the distan
from the wall for the FENE-P~dashed line! vs the Newtonian flow
~continuous line!. The profiles hardly change near the wall, but t
amplitude is larger for the FENE-P solution.
©2003 The American Physical Society03-1
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amenable to analytic investigation in the turbulent regime.
gain insight, we therefore attempt to simplify them as mu
as possible without losing the main phenomena~i!–~iii !.
Consider therefore a model for the streamwise veloc
which is the Burger’s equation (u in the streamwise direc
tions with gradients in they ~wall-normal! direction!, to
which the effect of a scalarR is added:

ut1uuy5nuyy1sRy1F, ~4!

Rt1uRy52
1

t
R1Ruy , ~5!

where a subscripty stands for a partial derivative with re
spect toy. In the following, we shall denote Eqs.~4! and~5!
with the acronimousuR model. The parameters is related to
the polymer concentration andt is the relaxation time ofR.
We will consider the model in the domain2L<y<L, with
boundary conditions chosen later. We will denote spatial
erages by pointed brackets,^A&[*2L

L A(y)dy. The simplic-
ity of the uR model allows us to state the energy budget

FIG. 2. Upper panel: the dependence of the rms velocity fl
tuations as a function of the distance from the wall. We are in
ested inU rms for comparison with our model. Lower panel: the tra
of the conformation tensorR as a function of the distance from th
wall. We stress the qualitative similarity to the dependence ofU rms

in the upper panel.
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simple terms. Multiplying Eq.~4! by u and taking the spatia
average of Eqs.~4! and ~5!, we obtain

1

2

d

dt
^u2&52n^uy

2&1s^uRy&1^Fu&, ~6!

d

dt
^R&52

1

t
^R&12^Ruy&. ~7!

The term^uRy& measures the ‘‘energy’’ given by the velocit
field u to the polymer fieldR. Multiplying Eq. ~7! by s/2 and
summing Eq.~7! with Eq. ~6!, we obtain

d

dt S 1

2
^u2&1

s

2
^R& D52n^uy

2&2
s

2t
^R&1^Fu&. ~8!

In the steady state, the overall power^Fu& is balanced by the
overall energy dissipation per unit timeD, D5n^uy

2&
1(s/2t)^R&. The term1

2 ^u2&1 (s/2) ^R& represents the sum
of the kinetic energy of the flow plus the potential energy
the stretched polymers. We remark that already from th
elementary considerations it becomes clear that for a fi
power input the existence of the term (s/2t)^R& necessarily
reduces the gradients ofu in agreement with point~ii ! above.
To address points~ii ! and ~iii ! further, we consider next the
solution of the model withF50 and with a fixed velocityu
and stretchingR at 2L and L. In other words, we take a
boundary conditions

u~2L !5u0 , u~L !52u0 , R~2L !5R~L !5R0 .
~9!

In Fig. 3, we compare the solution of theuRmodel to that of
the pure Burger’s equation@i.e., Eq.~4! with R5F50.# To
focus our thinking, we would like the reader to consider t
solution in the left half space as a model of the streamw
velocity component in the lower half channel, with the so
tion in the right half space being simply an antisymmet
copy. The position of the lateral ‘‘wall’’ is modeled by th
point whereu50. Thinking this way points~ii ! and~iii ! are
clearly demonstrated. We proceed now analytically to de
onstrate drag reduction@point ~ii !# and to understand the pro

-
r-

FIG. 3. Comparison of the solution of theuRmodel~connected
circles! to the solution of Burger’s equation~continuous line!. The
dashed line corresponds to the functionR. The parameters are
t5104, u051.17, s50.25, andR052.5.
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file of R @point ~iii !#. First, we consider the stationary sol
tion of the pure Burger’s equation. Integrate Eq.~4! in y to
find

1
2 u25nuy1 1

2 u0
2 , ~10!

where the constant of integration was fixed by noticing t
for L sufficiently largeuy is expected to vanish at the boun
aries. Multiplying Eq.~10! by uy , and integrating between
2L andL using the boundary conditions, we find the visco
dissipatione,

e[n^ux
2&5

2

3
u0

3 . ~11!

Next we consider the solution of theuR model for the same
boundary conditions~9! and R>0. In the stationary state
Rt50, and by dividing Eq.~5! by Ru we can integrate it
formally in y and obtain

R5auuuexpS 2
1

tE dy

u D , ~12!

where a is a constant of integration. This equation is t
explanation of point~iii !. It says that for small velocityu
;0, i.e., for y;0, R necessarily goes to0. In particular,
approximatingu52my near the pointy50, we obtainR
;uuub, whereb5111/(mt). Thus, we should expect that a
positions with smallu where the gradient ofu is large the
generic behavior ofR is a cusp withR50 for mt>1. To
compute the dissipation analytically, we consider the lim
t→`, i.e., we look for a solution at the zero order of th
perturbation series in 1/t. In this limit

R5
R0

u0
uuu. ~13!

Returning to Eq.~4!, we integrate it intoy to obtain

nuy5 1
2 u22SR1sR02 1

2 u0
2 . ~14!

We can now substitute Eq.~13! in the domain2L<y<0
whereuuu5u, and integrate between2L and 0. Multiplying
the result by a factor of 2, we find the viscous dissipationeR,

eR5 2
3 u0

323sR0u0 . ~15!

This result is an analytic demonstration of point~ii !. We note
that our analysis has been performed in the limitt→`. For
large but finite values oft, the qualitative picture we hav
drawn is unchanged. Needless to say, the above discus
can be reformulated by keeping constant the energy diss
tion while increasing the value ofu at the boundary, to dem
onstrate point~i!. We choose, however, to demonstrate po
~i! next, using a forced solution. Point~i! is most clearly
demonstrated in theuR model using periodic boundary con
ditions and constant forcing. We consider 0<y<2p and
choose the external forcingF to be
02530
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F~y!5 f 0 sin~4y/3!, for 0<y<
3p

2
,

F~y!5 f 1 sin~4y!, for
3p

2
<y<2p. ~16!

We examined the solutions of theuR model for the set of
parametersf 050.1, f 150.05, n50.01, s50.01, and initial
conditionsR(y)52 sin(y). The remaining parameter is th
relaxation timet. It turns out that for very small values oft,
no effect of the polymer field is observed.~We remark that
for periodic boundary conditions the limitt→0 corresponds
to the case of no polymer.! For t→` no stationary solutions
can be obtained. Fort smaller than some critical valuetc ,
the solution of theuR model shows stable stationary sol
tions with drag reduction. The typical situation is presen
in Fig. 4, showing the numerical solutions fort5(0.15)21

<tc , compared against the solution of Burger’s equati
The uR model shows a larger amplitude near the strong
shock due to forcing atx53p/4. It is worth noting that the
gradient is maintained extremely close to the one obtained
the Burger equation, demonstrating nicely point~i!. Point
~iii ! is nicely demonstrated in Fig. 5 which presents the
lution for R together withu2 for both theuR model and the
Burger equation. As one can clearly see, the behavior ofR is
similar to what is observed in Fig. 1, namely, there is
qualitative similarity between the space dependence ofR and
u2, here with a sharp cusp inR near the point of maximum
gradient ofu. On the other hand, the smallest shock pres
in the solution of Burger’s equation has been complet
smoothed out by theuR model. This is an indication tha
whenR is not sufficiently suppressed where the gradient ou
is significant, there can bedrag enhancement. This important
point will be addressed again in the concluding remar
Again, the simplicity of the model affords an analytic expl
nation of why the solution near the biggest shock show
larger velocity amplitude compared to the Burger equati
Let y0 be the position of the maximal velocity near th
shock. The positiony0 is unchanged in the two models. W
can expandu, F, andR as power series neary0. Let D be

FIG. 4. The solution of theuR model with constant forcing and
periodic boundary conditions~connceted circles!. Continuous line:
the Burger equation without the polymer.
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defined asD5ys2y0, whereys53p/4 is where the velocity
vanishes~the wall position in our model!. We have

u~y!5u02u2y2, F~y!5F01F1y, R~y!5R01R1y,

~17!

whereF0; f 0D andF1;2 f 0 because of Eq.~16!. Inserting
Eq. ~17! into theuR model, we obtain

u05
n f 01sR0t21

D f 0
5ub~11P!, P5

sR0

nt f 0
, ~18!

where ub5n/D is the solution obtained without polyme
(P50). The increment of the velocity, which is responsib
for the drag reduction, is proportional tosR0.

In summary, we have introduced a simple model of
effect of polymeric additives to Newtonian fluids, with th
aim of understanding in simple mathematical terms some
the prominent features associated with the phenomeno
drag reduction. Needless to say, the model cannot be take
quantitative; we were concerned with the qualitative featu
summarized above for convenience as points~i!–~iii !. We
demonstrated that our model reproduces these qualita

FIG. 5. The solution of theuR model with constant forcing and
periodic boundary conditions. Dashed line:R(y). Connected
circles: 20u2 of the solution ofuR. Solid line: 20u2 of the solution
of Burger’s equation.
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features, and provided straightforward analytic explanat
to all those features. It appears that we can draw from
results of this model a few important conclusions.

~i! Arguments concerning the turbulent cascade proc
do not appear essential. These arguments are the hallma
the theory presented in Ref.@4# which proposed that the mai
effect of the polymer is to introduce a dissipative cutoff
scales larger than the Kolmogorov scale, due to the poly
relaxation time matching there the hydrodynamic time sca
Looking at Eq.~5!, one could think that the largest velocit
gradients could be estimated as^uuyu&;1/t. But sinceR can
go to 0 where the gradient is largest, such estimates ca
be made. Moreover, just an increase in the dissipative s
cannot account for drag reduction; ahomogeneousincrease
in the effective viscosity should lead by itself to drag e
hancement rather than reduction.

~ii ! Drag reduction is a phenomenon that appears on
scales of the system size, involving energy containing mo
rather than dissipative, small scale modes@10#.

~iii ! The main point appears to be thespace dependenc
of the stretching of the polymer, here modeled by the va
of R(y). It is crucial thatR is small where the velocity gra
dients are large. It is the space dependence of the effec
viscosity which should be looked at as the source of d
reduction. A similar conclusion was arrived at in the conte
of the study of the stability of laminar flows in a chann
geometry@8,9# accept that there the space dependence of
effective viscosity had been introduced by hand. In t
FENE-P context as well as in our model~and presumably in
actual experiments!, the space dependence appears s
consistently. It remains to understand this self-consist
buildup of differential effective viscosity in the context of th
much more elaborate FENE-P model. In light of the pres
results, this appears an extremely worthwhile endeavor
will shed important light on the phenomenon of drag redu
tion.
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